

Drug-Drug Co-crystallization

High-drug-loading Magnetic Nanoplatforms

Anca Emanuela Minuti, Camelia-Mihaela Danceanu, Cristina Stavila, Horia Chiriac, Nicoleta Lupu, Daniel Gherca*, Adrian-Iulian Borhan, Dumitru-Daniel Herea, Luminita Labusca

> National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, Iasi 700050, Romania *dgherca@phys-iasi.ro

GOAL OF THE STUDY

Nanomedicine is regarded as one of the most promising applications of nanotechnology, as it would allow the development of tailored therapies, with a high level of selectivity and efficacy¹. Most nanomedicines have low drug loading (few weights percent $10 \div 20\%$) and the clinical translation of such nanomedicines is challenging due to high production cost, issues in scale-up productions, irreproducible properties and toxic side-effects from the nanoparticles. To achieve a drug therapeutic window, very high particle concentration is required, but the very viscous solution of such high NP concentration leads to many difficulties² and it is critical to increase drug loading³. Therefore, high drug-loading nanoparticles would be ideal to achieve the high drug dose with a reduced amount of carrier material⁴. The present study aims to design, assemble and fabricate a new generation of multifunctional nanoplatforms for performing controlled drug loading for biomedical applications. The proposed tasks are made possible by combining two components within the nanoplatforms (i) Fe₃O₄ magnetic nanoparticles that allow high drug load and (ii) self-assembled drug-drug co-crystal (Captopril-Losartan potassium) attached to the surface of the magnetic particles in high weight (>30%) that allow selective delivery of the structure to target receptor.

METHODOLOGY OF THE INVESTIGATION

Morphology control Enhanced Drug Loading

Optimized Drug Loading by

 Fe_3O_4

nanoparticles. The TGA results confirmed that the embedded Fe₃O₄ nanoparticles with Captopril-Losartan co-crystal (wt. 32.4%) has been done successfully.

Figure 3. Viability of fibroblasts cells incubated with Captopril-Losartan co-crystal - Fe_3O_4 magnetic nanocomposite as a function of concentration.

line). The diffractograms recorded from the powder XRD of sample show new peaks at 2θ position completely different from that of pure active pharmaceutical ingredients (black and red lines) indicating a new structure.

Cell viability tests were performed by MTT (5-dimethylthiazol-2-yl-2, 5diphenyltetrazolium bromide - Vibrant ®TermoFisher Scientific) assay according to supplier's instructions. Absorbance was read at 570 nm. Cell viability (CV) as expressed by MTT optical density (OD) was calculated using the formula $CV = 100 \times (ODs-ODb) / (ODc-ODb)$, where ODs = ODof particle treated cells; ODb = OD of blank (media only); ODc = OD of untreated cells. The cytotoxicity of the Fe₃O₄-Captopril-Losartanco-crystal was evaluated indirectly by measuring the cell proliferation rate for concentrations of nanoplatforms in cell culture media ranging between 1.5-100 µg/mL on normal human dermal fibroblasts. No cytotoxic effect was observed, even at high concentration rates of $100 \,\mu g/mL$.

CONCLUSION

"Post-loading" strategy to fabricate nanoplatforms was successfully applied in this work to achieve high drug-loading nanoparticles (Fe₃O₄-Captopril-Losartan co-crystal with 32.4 wt.%) The results of the viability assay showed that Fe_3O_4 nanoparticles loaded with Captopril-Losartan potassium are not toxic to the normal cells tested.

KEY REFERENCES

¹H. Van Ngo, P. K. Nguyen, W. Duan, V.-T. Tran, P. H.-L. Tran, T. T.-D. Tran, *Int. J. Pharm.*, 513, 148-152, 2016. ²Y. Liu, G. Yang, T. Baby, D. Chen, D. A. Weitz, C. X. Zhao, Angew. Chem., Int. Ed., 59, 4720-4728, 2020 ³G. Yang, Y. Liu, H. Wang, C. Zhang, A. Middelberg, C. X. Zhao, Angew. Chem., Int. Ed., 8,14357-14364, 2019. ⁴Y. Liu, G. Yang, L. Wang, D. Chen, D. Weitz, C.-X. Zhao, Angew. Chem. Int. Ed., 59, 20065-20074, 2020,

ACKNOWLEDGMENTS

This work was supported by a grant of the Ministry of Research, Innovation and Digitization (MCID), project 33N/2019 (PN 19 28 01 01)